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Prevailing models of Earth’s core formation based on hafnium-tungsten and
uranium-lead chronometry imply a rapid early accretion of Earth’s main mass
in ∼10 Myr1–4, followed by a moon-forming giant impact terminating accretion
at either ∼301,5 or ∼1002,3 Myr after solar system formation. These models as-
sume full metal-silicate equilibration during core formation, consistent with the
core-mantle partitioning of siderophile elements6,7. Here we show that the geo-
chemical observations permit a much wider range of possibilities, yet still provide
bounds on Earth’s accretion and core formation. The Hf-W system mainly con-
strains the degree of core-mantle equilibrium rather than the accretion timescale,
whilst the U-Pb system constrains Earth’s terminal accretion to ∼4.45 billion
years ago, consistent with the age of the Moon8,9. Exploring a wide parameter
space within geochemical models demonstrates that at least 36% of Earth’s core
formed in equilibrium with the mantle. We conclude that both equilibrium and
disequilibrium models are equally compatible with the geochemical observations,
suggesting that a better understanding of the physical and chemical conditions of
metal-silicate segregation is required to more tightly constrain Earth’s accretion.

Impacts of numerous Moon- to Mars-sized planetary embryos on the growing Earth re-
leased sufficient energy to induce melting and core formation within the Earth10,11. As metal
segregation is thought to happen much faster than accretion, the time scale of core formation
can be used to determine the rate of Earth’s accretion. The Hf-W systematics of Earth’s
mantle yield model time scales for accretion that are faster than those estimated based on
U-Pb systematics. The equilibrium two-stage model ages are tHf-W

2,eq = 31.0 ± 4.4 Myr4,12–14

and tU-Pb
2,eq = 55.9−130.5 Myr. The model ages calculated in an exponential growth model are

roughly a factor of 3 smaller, with τ
Hf/W
a,eq = 10.6± 0.5 Myr and τU-Pb

a,eq = 21.6− 51.0 Myr (τa
corresponds to time taken to achieve 63% growth; the time to achieve 95% growth is similar
to the two stage model ages) (Supplementary Methods). Several models were proposed to
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account for this disparity in calculated accretion time scales, including disequilibrium during
core formation15–17, a late segregation of Pb-bearing sulphides to the Earth’s core18,19, and
the addition of Pb by a late veneer subsequent to core formation5. The main source of un-
certainty in using Hf-W systematics to determine the core formation time scale is the strong
dependence of the system on the degree of metal-silicate equilibration12,15–17. Some authors
have argued that U-Pb systematics place no constraint on core formation because neither
the bulk Earth Pb isotopic composition nor the bulk Earth U/Pb ratio are sufficiently well
known20,21. Additional uncertainty arises because some recent experiments seem to indicate
that Pb was not partitioned into the Earth’s core22, although this result has been questioned
by others23 due the high C contents of the metal phase in those experiments. In any case,
the U-Pb age of the Earth appears to have some significance, because it is similar to the age
of the Moon8,9.

A serious shortcoming of current geochemical models of Earth’s accretion and core forma-
tion is that their entire parameter space has never been fully explored. For instance, all the
models use specific growth curves without investigating the entire range of possible curves. It
thus remains unclear whether the particular accretion curve chosen provides the best approx-
imation of Earth’s accretion. Furthermore, existing models of disequilibrium15–17,24 have not
studied the combined constraints of both isotopic and siderophile element observations. To
address these important questions, we developed a geochemical box model for metal-silicate
differentiation in the growing Earth. In the model, material of the planetary embryos is as-
sumed to differentiate into mantle and core at time 0 (the time of solar system formation),
with metal and silicate in equilibrium with one another. This assumption seems reasonable,
given the evidence for very early differentiation of meteorite parent bodies12,25. Over the
course of the accretion, the embryo material is added to the Earth at some rate described by
a function M(t) which determines the fraction of the Earth that has accreted at time t. Two
forms for M(t) are commonly chosen: a step function (two stage model),

M(t) =
{

0, 0 < t < t2,
1, t > t2,

(1)

where all the accretion occurs at a particular instant t2; or an exponential

M(t) = 1− e−t/τa , (2)

which has similarities with the accretion curves produced by some n-body simulations26,27.
τa is the corresponding mean age. A useful two parameter generalisation of the exponential
accretion model is the Weibull accretion model,

M(t) = 1− e−(t/α)β , (3)

where α is a time scale parameter (time taken to accrete 63% of the Earth), and β is a shape
parameter. When β < 1 accretion happens faster than exponential at early times, and slower
than exponential at late times.

As accretion proceeds, material from the mantle of the embryos is added directly to the
Earth’s mantle. However, a mass fraction k of material from the core of the embryos chemically
equilibrates with the Earth’s mantle before joining the Earth’s core, with the remaining
fraction 1 − k added directly to the Earth’s core. When k = 1, the model is an equilibrium
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model, and all memory of differentiation in the embryos is lost. For k < 1 there will be
some memory of the embryos’ differentiation. k represents a simple parametrisation of the
complex interactions that take place between metal and silicate during accretion. The degree
of metal-silicate equilibration depends crucially on the physical conditions under which metal-
silicate segregation takes place10. For example, in a turbulently convecting magma ocean the
metal may fall through the liquid silicate as small droplets, equilibrating in the process. But
it is unclear whether the metal cores of newly accreted objects always emulsify in this way,
and some cores may have directly merged with Earth’s core without substantial metal-silicate
equilibration.

The chemical equilibration processes that take place both in the embryos and during
Earth’s accretion are described by metal/silicate partition coefficients D, which are functions
of the temperature, pressure and oxygen fugacity conditions under which chemical equilibra-
tion takes place. Thus, the partitioning is likely to have changed dramatically over the course
of Earth’s accretion. We model this with the approach used by Wade and Wood6. The point
of last metal-silicate equilibration is assumed to be at the base of a magma ocean, which is
at some fixed fraction of the depth to the core-mantle boundary. Thus as the planet grows,
the pressure at the base of the magma ocean increases. The temperature at the base of the
magma ocean is simply a function of this pressure, set by the constraint that it lies on the
peridotite liquidus, and also increases as the Earth grows. The oxygen fugacity is also as-
sumed to evolve over the course of the accretion, linearly increasing with M(t) after the first
10% of the accretion7. Using parametrisations of experimental data on metal-silicate parti-
tioning6,28–30, the expected siderophile element depletion of the mantle due to core formation
can be calculated.

In agreement with earlier work, models with full equilibration (k = 1) can produce good
fits to the observed siderophile element abundances (Figure 1a), and require an increase
in oxygen fugacity of around 3 log units over the course of accretion6,7. However, equally
good fits can be found in scenarios with partial equilibration, as shown in Figure 1b. Thus,
the siderophile element depletions in Earth’s mantle are not evidence for equilibrium core
formation and consequently cannot be used to argue for complete metal-silicate equilibration
when interpreting the isotopic observations. In partial equilibration scenarios, the conditions
of differentiation in the embryos are important, and these are very poorly constrained. There
is a trade off between conditions in the embryos and conditions on Earth, and good fits can
be found for a wide range of different embryo conditions (Supplementary Methods). Thus,
the siderophile element abundances may reflect not only the conditions of core formation in
the growing Earth but also the conditions of core formation in the embryos.

Whilst the dramatic changes in partitioning behaviour over the course of accretion are
key to understanding the siderophile element abundances, the main constraints that the iso-
topic observations place can be understood within the context of simpler constant partitioning
models. Such a model can be seen in Figure 2, which shows an equilibrium Weibull accretion
model of the Earth with the values of α and β compatible with the Hf-W and U-Pb obser-
vations, assuming constant partitioning. There is a region of overlap around α = 0.4 − 2.5
Myr, β = 0.22 − 0.36 where the two isotopic systems are consistent. Thus, having a rapid
accretion at early times (63% of the Earth accreted in less than 2.5 Myr) and a slower accre-
tion at late times is one way to match the isotopic observations with an equilibrium model.
Thus, the apparent disparity between the previously calculated Hf-W and U-Pb time scales
for Earth’s accretion may simply reflect the choice of an improper accretion curve (i.e. the
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exponential or two stage models) rather than being a case for partial equilibration15,17, late
sulphide segregation19, or late veneer Pb addition5.

A key unknown in interpreting the isotopic observations is the degree of metal-silicate
equilibration during core formation. This is demonstrated in Figure 3b, where the two stage
age t2 is given as a function of k for both Hf-W and U-Pb. Importantly, there is a region
of overlap k = 0.36 − 0.41 and t2 = 67.1 − 162.9 Myr where both systems are consistent.
The exponential model ages (shown in Figure 3a) also overlap, with k = 0.37 − 0.42 and
τa = 33.9− 85.8 Myr. As can be seen by the flattening of the curves in Figure 3 for large τa
and t2 for Hf-W, there is a minimum amount of equilibration required to be compatible with
the observations. This minimum value is the same for any accretion curve, and is determined
by the Hf-W observations to be in the range k = 0.36 − 0.39. For both two stage and
exponential models, the amount of equilibration required to get a match between Hf-W and
U-Pb is very close to this lower bound. Hf-W thus provides very little information about
the timing of accretion in such models, and essentially determines the degree of equilibration.
U-Pb is less sensitive to the degree of equilibration and mostly determines the timing17.

The discussion up to this point illustrates that a variety of different accretion scenarios
are compatible with the observations. Nevertheless the observations still place important
constraints. Isotopic observations only fully determine the accretion curve M(t) when simple
parametric forms are assumed, such as an exponential model or a two stage model. In general,
M(t) will be underconstrained, but there are bounds that can be placed on M(t) which are
shown as pink (Hf-W) and green (U-Pb) shaded regions in Figure 4. Slightly tighter bounds
are obtained when both Hf-W and U-Pb constraints are considered together (yellow region).
Accretion curves compatible with the observations must lie wholly within the unshaded region.

The shaded regions shown in Figure 4a provide a clear demonstration of the different
constraints the Hf-W and U-Pb systems place on equilibrium accretion. Hf-W predominately
constrains the early accretion, e.g. it shows that at least 80% of the Earth must have accreted
by 35 Myr; but it tells us very little about the late (> 60 Myr) accretion other than that no
more than 14% of the accretion can happen late: as far as the Hf-W observations are concerned
the last 14% of the accretion could have happened yesterday. On the other hand, U-Pb tells
us little about the early accretion, but strongly constrains the late accretion, e.g. it shows
that the final 10% of accretion must have begun by 120 Myr for the assumed parameters. The
bounds on the accretion curve depend on the degree of equilibration, and Figure 4b gives an
example with partial equilibration.

In summary, we can simultaneously match both the siderophile element abundances and
the isotopic constraints with a single model. However, there are a wide range of models,
both equilibrium and disequilibrium, that are all equally compatible with the observations.
Based on the Hf-W, U-Pb, and siderophile element constraints we cannot tell whether full
core-mantle equilibration occurred or not, but we can constrain the degree of equilibration
to be at least 36%. Thus, in spite of a wide range of geochemical observations, important
details regarding Earth’s accretion and core formation remain only poorly constrained. A
better understanding of the physical and chemical conditions of metal-silicate fractionation as
well as of the conditions prevailing in Earth’s building blocks are needed before more tightly
defined accretion curves for the Earth can be constructed.
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Methods Summary

The geochemical box model used throughout this work is governed by

d
dt

((1− F )Mcm) = [(1− F ) cme + kF (cce −Dccm)]
dM
dt

, (4)

d
dt

(FMcc) = [kFDccm + (1− k)Fcce]
dM
dt

, (5)

where F = 0.323 is the mass fraction of Earth that is core, k is the mass fraction of metal
that equilibrates during accretion, Dc is the metal/silicate partition coefficient, cm is the
concentration of a chemical species in Earth’s mantle, cc is the concentration in Earth’s core,
cme is the concentration in the mantle of the embryos, cce is the concentration in the core of
the embryos, and M(t) is the fraction of the Earth that has accreted at time t.

The parameter k is a simple representation of the equilibration of the metal as it travels
through the Earth’s mantle to the core, and models the equilibration process as a simple
mixture of fully equilibrated and unequilibrated material. The real situation may be more
complicated, as different elements have different diffusivities and thus may equilibrate at
different rates. Hence the effective k could differ between different elements. For simplicity
we treat k as a constant for all elements.

If the partition coefficients vary with time then the governing equations have to be solved
numerically (Figure 1). The partition coefficients are a function of temperature, pressure, and
oxygen fugacity and have been parametrised using regressions of experimental data6,7,28–30.
There are uncertainties in the regression coefficients and these have been propagated through
the model to generate the red error bars shown in Figure 1. It should be noted that these
red error bars may underestimate or overestimate the true uncertainty for two main rea-
sons: First, errors have only been included on some of the regression coefficients used in the
parametrisation. If errors were included on all of the regression coefficients then the error bars
would be substantially larger30, but not all authors report errors on all coefficients. Second,
the errors on the regression coefficients have been assumed to be independent, so the true
uncertainty could be larger or smaller depending on the degree of correlation between the
regression coefficients, but this correlation is not reported. There are also uncertainties in the
present day mantle abundances, and these are shown in the blue error bars of Figure 1.

A number of simple analytical results arise when the partitioning is constant, as assumed
in Figures 2-4. Detailed derivations of the following results can be found in the Supplementary
Methods. The two stage ages with (t2) and without (t2,eq) disequilibrium are related by

1− e−λt2,eq =
k (1 +Rd)
1 + kRd

(
1− e−λt2

)
, (6)

where λ is the decay constant and Rd = FDd/(1 − F ). Dd is the (assumed constant)
metal/silicate partition coefficient of the daughter element (W or Pb). This is the relationship
plotted in Figure 3b.

The two stage model ages t2 and the exponential model ages τa are related by

e−λt2 =
Γ(2 + kRd)Γ(1 + λτa)

Γ(2 + kRd + λτa)
, (7)

where Γ(z) is the Gamma function, and this is used in plotting Figure 3a.
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A lower bound on k is given by

k ≥ 1− e−λt2,eq

1 +Rde−λt2,eq
, (8)

and this describes the asymptotes for large t2 and τa in Figure 3.
The early accretion (t ≤ t2) is bounded by (pink and green regions, upper left of Figure 4)

M(t) ≤ eλ(t−t2)/(1+kRd), (9)

and the late accretion (t ≥ t2) by (pink and green regions, lower right of Figure 4)

M(t) ≥
(

e−λt2 − e−λt

1− e−λt

)1/(1+kRd)

. (10)

The isotopic evolution of models with evolving partitioning behaviour, such as those in
Figure 1, do not differ substantially from the constant partition coefficient models of Figures
2, 3, and 4. The only difference is that accretion needs to be slightly more protracted to
match the same Hf-W and U-Pb observations. The requirement of more protracted accretion
arises because both W and Pb are more siderophile during the early accretion than the late
accretion, which causes a bias towards younger ages. For example, the disequilibrium model
of Figure 1b (evolving partitioning) requires an exponential accretion with τa = 49.7 Myr and
k = 0.42 as opposed to τa = 40.3 Myr and k = 0.40 of Figure 4b (constant partitioning).
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Figure 2: Values of the Weibull time scale parameter α and shape parameter β compatible
with the observed isotope systematics. Constant partitioning and full equilibration (k = 1) is
assumed. For Hf-W the uncertainty due to uncertainty in DW is shown (DW = 21− 44). For
U-Pb, DPb is assumed constant, DPb = 13, but the uncertainty due to unknown bulk lead
isotopic composition is shown. When β = 1, the exponential accretion model is recovered,
with scale parameters αHf-W = 9.9−10.9 Myr and αU-Pb = 21.5−50.1 Myr. There is a region
of overlap between Hf-W and U-Pb around α = 0.4− 2.5 Myr, β = 0.22− 0.36.
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Supplementary Methods

A Model governing equations

The model used throughout this work is a simple box model, a diagram of which can be seen
in Supplementary Figure 1, and a summary of notation in Supplementary Table 6. There are
two main stages: First the planetary embryos form, and differentiate into a metal core and
a silicate mantle. It is assumed that the metal is in chemical equilibrium with the silicate as
the embryo differentiates. The second stage comprises the accretion of the Earth from the
planetary embryos. The mantle of the planetary embryos directly joins the mantle of the
accreting Earth. The core of the planetary embryos takes two different routes to the core of
the accreting Earth: A mass fraction k of the incoming core material equilibrates with the
Earth’s silicate mantle as it travels to the Earth’s core, whereas a mass fraction 1−k is added
directly to the Earth’s core without any equilibration.

A.1 Stable species

Consider first the case of stable species, such as a stable isotope or a trace element. The
concentrations of a stable species in the mantle and core of the embryo are given by the usual
equilibrium partitioning equations, namely

Fcce + (1− F )cme = cb,
cce
cme

= Dc (A.1)

or
cme =

cb
FDc + (1− F )

, cce =
Dccb

FDc + (1− F )
, (A.2)

where cme refers to the concentration in the mantle of the embryo, cce to the concentration
in the core of the embryo, and cb to the bulk concentration. F represents the mass fraction
of metal, which will be assumed to be the same as the Earth’s current core mass fraction,
F = 0.323. Dc is the metal/silicate partition coefficient for the element in question. In general
Dc is a function of the temperature, pressure, and oxygen fugacity conditions under which the
metal/silicate equilibration takes place. As a simplifying assumption it will be assumed that
all embryo material formed at the same temperature, pressure and oxygen fugacity conditions
and thus Dc takes a single value for all embryo material.

The Earth accreted over a period of time, which will be represented by a function M(t)
which determines the fraction of the Earth that has accreted at time t, where t = 0 represents
the beginning of accretion. Thus M(0) = 0, and M(t) = 1 when accretion has ceased. The
entire mass of each embryo is assumed to join the mass of the Earth: we do not model
“hit-and-run” collisions31,32, where only part of the embryo material joins the Earth.

Conservation of mass in the accreting Earth can be described by the following equations
for the Earth’s mantle and core reservoirs

d
dt

((1− F )Mcm) = [(1− F ) cme + kF (cce −Dccm)]
dM
dt

, (A.3)

d
dt

(FMcc) = [kFDccm + (1− k)Fcce]
dM
dt

, (A.4)

SI–1



where cm is the concentration of the chemical species in the Earth’s mantle, and cc is the
concentration in the Earth’s core. A mass fraction F of the Earth is core, and 1 − F is
mantle. Thus the quantities (1 − F )Mcm and FMcc represent the relative number of moles
of the chemical species in the two reservoirs. The two terms on the right hand side of (A.4)
represent the two paths that metal from the embryos takes to the Earth’s core: (1 − k)Fcce
represents the mass fraction 1−k which travels to directly to the core without reequilibration
and thus records the embryo concentration, whereas kFDccm represents the mass fraction
k which equilibrates with the mantle and thus has a composition in equilibrium with the
Earth’s mantle. The first term on the right hand side of (A.3), (1 − F )cme, represents the
mantle embryo material that is added directly to the Earth’s mantle, whereas kF (cce−Dccm)
represents the change in the Earth’s mantle composition due to reequilibration with some of
the incoming embryo core material. In general the partition coefficient Dc will be a function
of time, since the pressure, temperature, and oxygen fugacity conditions under which metal-
silicate equilibration occurred is expected to have changed as the Earth accreted. Note that
the bulk concentration of the two reservoirs combined, Fcc +(1−F )cm = cb remains constant
during the accretion, as can be seen by adding (A.3) and (A.4).

(A.3) and (A.4) can be rewritten as evolution equations for the concentrations cm and cc,

dcm
dt

=
[
cme +

kF

1− F
cce −

(
1 +

kDcF

1− F

)
cm

]
1
M

dM
dt

, (A.5)

dcc
dt

= [kDccm + (1− k)cce − cc]
1
M

dM
dt

. (A.6)

There is a singularity in the above equation at t = 0 as a result of the initial zero mass fraction
accreted, M(0) = 0. This singularity is removed by imposing the initial conditions cm = cm0

and cc = cc0 where

cm0 =
cme + kFcce/(1− F )
1 + kFDc(0)/(1− F )

, (A.7)

cc0 =
kDc(0)cme + ((1− k + kDc(0)F/(1− F )) cce

1 + kFDc(0)/(1− F )
, (A.8)

where Dc(0) is the metal/silicate partition coefficient at time 0. The terms in square brackets
in (A.5) and (A.6) are then initially zero and the singularity is removed. Starting from these
initial conditions, (A.5) and (A.6) may be integrated to obtain the concentrations in the
Earth’s mantle and core.

A.2 Parent isotope

Suppose a parent isotope p decays to a daughter isotope d with some decay constant λ. For
simplicity, we will assume the embryos form at time 0 in the model. The initial concentrations
of the parent isotope p in the embryos are given by equilibrium partitioning,

pme0 =
pb0

FDp + (1− F )
, pce0 =

Dppb0

FDp + (1− F )
, (A.9)

where pb0 is the initial bulk concentration. The subsequent evolution in time is given by the
usual radioactive decay law

pme = pme0e−λt, pce = pce0e−λt, pb = pb0e−λt. (A.10)
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The concentration of the parent isotope in the Earth’s mantle satisfies

dpm

dt
=
[
pme +

kF

1− F
pce −

(
1 +

kDpF

1− F

)
pm

]
1
M

dM
dt
− λpm, (A.11)

with initial condition
pm0 =

(1− F )pme0 + kFpce0

1− F + kFDp(0)
. (A.12)

Similar equations can be written for the Earth’s core.

A.3 Daughter isotope

The initial concentrations of the daughter isotope in the embryo are given by equilibrium
partitioning as

dme0 =
db0

FDd + (1− F )
, dce0 =

Dddb0

FDd + (1− F )
, (A.13)

with subsequent evolution due to radioactive decay given by

dme =dme0 + pme0(1− e−λt), (A.14)

dce =dce0 + pce0(1− e−λt), (A.15)

db =db0 + pb0(1− e−λt). (A.16)

The concentration of the daughter isotope in the Earth’s mantle satisfies

ddm

dt
=
[
dme +

kF

1− F
dce −

(
1 +

kDdF

1− F

)
dm

]
1
M

dM
dt

+ λpm, (A.17)

with initial condition
dm0 =

(1− F )dme0 + kFdce0

1− F + kFDd(0)
. (A.18)

B Analytical solutions for constant partition coefficients

When the partition coefficients vary in time due to changing temperature, pressure, and
oxygen fugacity conditions, the differential equations must be solved numerically. However, it
is useful to examine the case of constant partition coefficients, where some analytical solutions
are possible. Constant partitioning is assumed in Figures 2, 3, and 4. For the case of full
equilibration (k = 1), the analytical solutions have been reviewed in detail by Jacobsen1.
Here we generalise these solutions to the case of partial equilibration for some constant k,
0 < k < 1.

B.1 Stable species

We will assume the same constant partition coefficient for both metal/silicate partitioning in
the embryos and on Earth. It is convenient to introduce a new variable Rc = DcF/(1 − F ).
The embryo concentration in (A.2) can then be rewritten as

cme =
1

1 +Rc
· cb

1− F
, cce =

Rc
1 +Rc

· cb
F
, (B.1)
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and the initial Earth’s mantle concentration from (A.7) is

cm0 =
1

1 + kRc

(
cme +

kF

1− F
cce

)
=

1
1 +Rc

· cb
1− F

= cme. (B.2)

The mantle evolution equation from (A.5) is

dcm
dt

= (1 + kRc) (cm0 − cm)
1
M

dM
dt

(B.3)

with initial condition cm = cm0. The solution of the above is simply that cm is constant,
cm = cm0 for all time. Thus the concentration is the same in the mantle of the embryos as
in the mantle of Earth, and remains constant, as one would expect for the assumed constant
partitioning behaviour.

B.2 Parent isotope

The concentrations of the parent isotope in the embryo are from (A.9) and (A.10)

pme =
1

1 +Rp
· pb0

1− F
e−λt, pce =

Rp
1 +Rp

· pb0

F
e−λt, (B.4)

and the initial mantle concentration from (A.12) is

pm0 =
1

1 + kRp

(
pme0 +

kF

1− F
pce0

)
=

1
1 +Rp

· pb0

1− F
= pme0. (B.5)

The mantle evolution from (A.11) is

dpm

dt
= (1 + kRp)

(
pm0e−λt − pm

) 1
M

dM
dt
− λpm (B.6)

with initial condition pm = pm0. The solution of the above is simply pm = pm0e−λt.

B.3 Daughter isotope

The concentrations of the daughter isotope in the embryo are from (A.13), (A.14), and (A.15)

dme =
1

1 +Rd
· db0

1− F
+

1
1 +Rp

· pb0

1− F

(
1− e−λt

)
, (B.7)

dce =
Rd

1 +Rd
· db0

F
+

Rp
1 +Rp

· pb0

F

(
1− e−λt

)
. (B.8)

Now, noting that

dme +
kF

1− F
dce =

1 + kRd
1 +Rd

db0
1− F

+
1 + kRp
1 +Rp

pb0
1− F

(
1− e−λt

)
= (1 + kRd) dm0 + (1 + kRp) pm0

(
1− e−λt

)
, (B.9)
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the evolution of the daughter isotope in the mantle (A.17) may be written as

ddm

dt
=
[
(1 + kRd) (dm0 − dm) + (1 + kRp) pm0

(
1− e−λt

)] 1
M

dM
dt

+ pm0λe−λt (B.10)

with initial condition dm = dm0. The solution to the above can be expressed in integral form
as

dm = dm0 + pm0
1 + kRp
1 + kRd

(
1− e−λt

)
+
k (Rd −Rp)

1 + kRd
pm0

∫ t

0

(
M(s)
M(t)

)1+kRd

λe−λs ds, (B.11)

which in turn can be rewritten as

dm =dm0 + pm0
1 +Rp
1 +Rd

(
1− e−λt

)
+
Rd −Rp
1 +Rd

pm0

∫ t

0

[
1− k

1 + kRd
+
k(1 +Rd)
1 + kRd

(
M(s)
M(t)

)1+kRd
]
λe−λs ds. (B.12)

A convenient way of rewriting the integral in the above expression is in terms of an age
distribution (see section E for further discussion of age distributions). Let Td be a random
variable with cumulative distribution function (CDF)

P(Td ≤ s) =
1− k

1 + kRd
+
k(1 +Rd)
1 + kRd

(
M(s)
M(t)

)1+kRd

, 0 < s < t (B.13)

with P(Td ≤ s) = 0 for s < 0 and P(Td ≤ s) = 1 for s > t. The corresponding probability
density function (PDF) is

ρ(s) =
1− k

1 + kRd
δ(s) + k(1 +Rd)

(
M(s)
M(t)

)kRd Ṁ(s)
M(t)

, (B.14)

where δ(s) is the Dirac delta function. ρ(s) = 0 for s < 0 and s > t. The integral expression
on the right hand side of (B.12) is thus∫ t

0
P(Td ≤ s)λe−λs ds =

∫ t

0−
ρ(s)

(
e−λt − e−λs

)
ds = E

(
e−λt − e−λTd

)
(B.15)

where E denotes expectation. Thus we can write (B.12) more compactly as

dm = dm0 + pm0
1 +Rp
1 +Rd

(
1− e−λt

)
+
Rp −Rd
1 +Rd

pm0E(e−λTd − e−λt). (B.16)

Consider now a stable reference isotope d′, which is of the same element as d but neither
decays nor is a decay product. Thus d′m = d′m0. Since(

d

d′

)
m0

=
(
d

d′

)
b0

,
( p
d′

)
m0

=
1 +Rd
1 +Rp

( p
d′

)
b0
, (B.17)
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on dividing (B.16) by d′m we have(
d

d′

)
m

=
(
d

d′

)
b0

+
( p
d′

)
b0

(
1− e−λt

)
+
[( p
d′

)
m0
−
( p
d′

)
b0

]
E(e−λTd − e−λt). (B.18)

Since the bulk evolution satisfies(
d

d′

)
b

=
(
d

d′

)
b0

+
( p
d′

)
b0

(
1− e−λt

)
, (B.19)

(B.18) can be rewritten as

(d/d′)m − (d/d′)b
(p/d′)m0 − (p/d′)b0

= E(e−λTd − e−λt) (B.20)

or
(d/d′)m − (d/d′)b
(p/d′)m − (p/d′)b

= E(eλ(t−Td) − 1). (B.21)

(B.20) is the more useful form for extinct isotope systems such as Hf-W, since the present
day concentrations of the parent isotope are negligible. Given a reference isotope p′ for the
parent, (B.20) may be rewritten as

(d/d′)m − (d/d′)b
(p/p′)b0 [(p′/d′)m − (p′/d′)b]

= E(e−λTd − e−λt), (B.22)

which is similar to the usual form in which Hf-W model ages are expressed. For extinct
systems like Hf-W, e−λt is essentially zero at the present day. (B.20), (B.21), and (B.22) are
very similar to the usual expressions for a two stage model age. Indeed, the aim of introducing
the random variable Td is to make this similarity clear. The usual expressions for a two stage
age with full equilibration drop the expectations and have Td replaced by the equilibrium two
stage age t2,eq. Thus

E(e−λTd) = e−λt2,eq . (B.23)

C Relationships between model ages

(B.23) is the fundamental equation for comparing different model ages. The equilibrium
two stage age on the right hand side can be estimated from the current mantle and bulk
compositions. The left hand side depends on the accretion rate through M(t), the amount
of equilibration through k, and the enrichment of the daughter isotope in the metal during
partitioning through Rd. Different models assume different forms for M(t), and different
amounts of equilibration k. To compare the different models, we must study the behaviour of
E(e−λTd). Different models should give equal values for this quantity in order to fit the same
observations. Note that for long lived isotope systems such as U-Pb, E(e−λTd) ≈ 1− λE(Td),
and thus for such systems E(Td) takes the same value between different models. It is convenient
to introduce a new random variable Sd with cumulative distribution function

P(Sd ≤ s) = (M(s))1+kRd , s > 0 (C.1)
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which is related to Td by (B.13)

P(Td ≤ s) =
1− k

1 + kRd
+
k(1 +Rd)
1 + kRd

P(Sd ≤ s), s > 0. (C.2)

In the above it has been assumed that we are considering the present day, where accretion is
complete (M(t) = 1). It follows that

E(1− e−λTd) =
k(1 +Rd)
1 + kRd

E(1− e−λSd), (C.3)

E(Td) =
k(1 +Rd)
1 + kRd

E(Sd). (C.4)

From (C.3) it follows that if we know E(e−λTd), we know E(e−λSd). Models that differ only
in the form of M(t) must share the same value of E(e−λSd) in order to be compatible with
the same observations. However, models that differ in the degree of equilibration k will have
different values of E(e−λSd), but will still have the same values of E(e−λTd).

C.1 Two stage ages

The simplest model is a two stage model, where there is no accretion until a certain time, and
then all the accretion occurs at once. The function M(t) is then a step function,

M(t) =
{

0, 0 < t < t2,
1, t > t2,

(C.5)

where t2 is the corresponding two stage age. For the above choice of M(t) we have

E(e−λSd) = e−λt2 , (C.6)
E(Sd) = t2. (C.7)

Thus we can relate the two stage age t2,eq that occurs with full equilibration (k = 1) with a
two stage age t2 that occurs with partial equilibration (0 < k < 1) using (B.23), (C.3), and
(C.6)

1− e−λt2,eq =
k (1 +Rd)
1 + kRd

(
1− e−λt2

)
. (C.8)

This relationship is plotted in Figure 3b. It can be approximated for long-lived systems as

t2,eq ≈
k (1 +Rd)
1 + kRd

t2. (C.9)

For general λ, Jensen’s inequality on (B.23) combined with (C.4) and (C.7) implies

t2,eq ≤ E(Td) =
k (1 +Rd)
1 + kRd

t2 ≤ t2, (C.10)

and hence disequilibrium always increases the two stage age. From (C.8), the following in-
equality holds for k,

1− e−λt2,eq

1 +Rde−λt2,eq
≤ k ≤ 1, (C.11)

and hence there is a lower bound on the amount of disequilibrium. These inequalities become
equalities as λt2 →∞, and t2 → t2,eq respectively.

SI–7



C.2 Exponential accretion

One of the simplest continuous models of accretion is to assume an exponential accretion with
a mean age τa, namely

M(t) = 1− e−t/τa . (C.12)

The relevant moments are

E(e−λSd) =
Γ(2 + kRd)Γ(1 + λτa)

Γ(2 + kRd + λτa)
, (C.13)

where Γ(x) is the gamma function, and

E(Sd) = τaH1+kRd , (C.14)

where Hx is the xth harmonic number, which can be expressed for general x as Hx = γ +
Ψ(1 + x), where γ is the Euler-Maschoroni constant, and Ψ is the digamma function.

Comparing the expressions for E(e−λSd) in (C.6) and (C.13), we see there is the following
relationship between the two stage age t2 and the exponential mean age of accretion τa,

e−λt2 =
Γ(2 + kRd)Γ(1 + λτa)

Γ(2 + kRd + λτa)
, (C.15)

and this used in plotting Figure 3a. It can be approximated for long lived systems using (C.7)
and (C.14) as

t2 ≈ τaH1+kRd . (C.16)

For long-lived systems, the two stage age is thus always greater than the exponential mean
age of accretion, t2 ≥ τa. However, in general, the two stage age can be less than or greater
than the mean age of accretion depending on kRd and λ. Independent of λ, the ages satisfy
t2 ≤ τaH1+kRd , by Jensen’s inequality on (C.6). Typical values are RW ∼ 16 and RPb ∼ 7
which give H1+RW

∼ 3.4 and H1+RPb
∼ 2.7. Thus with full equilibration (k = 1) the two

stage model ages for Hf-W and U-Pb are around 3 times larger than the exponential model
ages, i.e. the two stage model ages relate to the point of ∼ 95% accretion in the exponential
models (1− e−3 = 0.95).

For integer values of kRd, (C.15) can be expanded as (exploiting the fact that Γ(x) =
(x− 1)! for integer x)

e−λt2 =
1+kRd∏
r=1

(
1 +

λτa
r

)−1

(C.17)

and rewritten as

t2 =
1
λ

1+kRd∑
r=1

log
(

1 +
λτa
r

)
(C.18)

which agrees with the relationship quoted by Jacobsen1 (his equation (77)) in the case of full
equilibration. (C.15) is more general as it encompasses partial equilibration, and holds for
non-integer values of the parameters.
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C.3 Weibull accretion

A useful two parameter accretion model is

M(t) = 1− e−(t/α)β , (C.19)

which is known as the Weibull distribution with time scale parameter α and shape parameter
β. The corresponding mean age of accretion is αΓ(1 + 1/β). The Weibull distribution en-
compasses both the models described above for appropriate choices of the shape parameter:
β = 1 is the exponential model, and as β →∞ the step function is recovered. For the Weibull
model there are no simple closed form expressions for the moments E(e−λSd) and E(Sd), and
the integrals need to be evaluated numerically (Figure 2).

Weibull models with β ≤ 1 have their maximum rates of accretion (dM/dt) at time t = 0,
while Weibull models with β > 1 have their maximum rates of accretion at later times t > 0.
To get a match between Hf-W and U-Pb with a Weibull model, β < 1 is required (Figure 2),
but this does not imply that Earth’s accretion was actually at its most rapid at time 0 (the time
of CAI formation). Physical models suggest there may have been a very early stage of slow
accretion, followed by rapid accretion and finally a very slow and protracted late accretion27.
If the duration of the very early stage of slow accretion was significantly shorter than the half
life of 182Hf then it would have had little influence on the subsequent isotopic evolution. A
very early stage of slow accretion could be added to the model without influencing the main
result: namely that a stage of rapid early accretion followed by a stage of protracted late
accretion is required.

D Bounds on accretion

D.1 Analytical bounds

There are some general bounds that can be placed on the accretion curve M(t) without
assuming any particular parametric form. Markov’s inequality applied to e−λSd is

P(e−λSd ≥ e−λt) ≤ E(e−λSd)
e−λt

(D.1)

which implies
P(Sd ≤ t) ≤ eλtE(e−λSd) = eλ(t−t2), (D.2)

and thus the following bound can be placed on M(t) using (C.1),

M(t) ≤ eλ(t−t2)/(1+kRd), (D.3)

which bounds the early accretion (t ≤ t2, Figure 4). Notably, the accretion cannot finish until
t ≥ t2. This bound is achieved by step function accretion curves of the form

M(t) =
{

0, 0 < t < tc,

eλ(tc−t2)/(1+kRd), tc < t <∞, (D.4)

for tc ≤ t2.
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Applying Markov’s inequality to 1− e−λSd gives

P(1− e−λSd ≥ 1− e−λt) ≤ E(1− e−λSd)
1− e−λt

(D.5)

which implies

P(Sd ≤ t) ≥
E(e−λSd)− e−λt

1− e−λt
=

e−λt2 − e−λt

1− e−λt
, (D.6)

and thus the following bound can be placed on M(t),

M(t) ≥
(

e−λt2 − e−λt

1− e−λt

)1/(1+kRd)

, (D.7)

which bounds the late accretion (t ≥ t2, Figure 4). This bound is achieved by step function
accretion curves of the form

M(t) =


(

e−λt2 − e−λt

1− e−λt

)1/(1+kRd)

, 0 < t < tc,

1, t > tc,

(D.8)

for tc ≥ t2.
Bounds can also be placed on the mean age of accretion. Let Tacc be a random variable

with CDF M(t). Then, from the inequality,

1− (M(t))n ≤ n (1−M(t)) , n ≥ 1 (D.9)

it follows that
E(Sd) ≤ (1 + kRd)E(Tacc), (D.10)

where E(Tacc) is the mean age of accretion. Similarly, from the inequality

1− (M(t))n ≥ 1−M(t), n ≥ 1 (D.11)

it follows that
E(Sd) ≥ E(Tacc). (D.12)

Jensen’s inequality implies that

E(e−λSd) ≥ e−λE(Sd). (D.13)

Since E(e−λSd) = e−λt2 , it follows that

t2 ≤ E(Sd). (D.14)

Thus the mean age of accretion can be bounded by

t2
1 + kRd

≤ E(Sd)
1 + kRd

≤ E(Tacc) ≤ E(Sd). (D.15)

For long-lived systems E(Sd) ≈ t2, and the two stage age t2 is then an approximate upper
bound on the mean age of accretion.
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D.2 Numerical bounds

Bounds on the accretion curve M(t) can also be calculated numerically. Suppose M(t) is
discretised as a sequence of steps, with M(t) = Mi for ti−1 < t < ti, where t1 ≤ t2 · · · ≤ tn
are the given times of the steps. Bounding M(t) is then a matter of solving a nonlinear
optimisation problem: Minimising or maximising Mj for a given j subject to the constraints

0 ≤M1 ≤M2 ≤ · · ·Mn ≤ 1, (D.16)

1− e−λt2 =
n∑
i=1

(
e−λti−1 − e−λti

)(
1−M1+kRd

i

)
. (D.17)

(D.16) ensures the accretion curve is valid, and (D.17) ensures the isotopic observations are
matched. The above problem can be solved using standard optimisation algorithms. The
advantage of a numerical solution is that multiple constraints can be included, and thus bounds
that include both Hf-W and U-Pb constraints can be calculated (yellow region, Figure 4). A
similar method can be used to numerically calculate bounds on the mean age of accretion
using the objective function

n∑
i=1

(ti − ti−1) (1−Mi) (D.18)

and the same constraints.

E Interpretation of age distributions

Age distributions were introduced in section B in order to represent various integral expres-
sions in a more compact form. However, it should be noted that these age distributions arise
naturally from residence time theory, which treats transitions between reservoirs as a Poisson
process33,34. This can be best illustrated for the equilibrium case (k = 1). Conservation of
mass for a stable species in the mantle reservoir (A.3) can be written as

dnm

dt
= cb

dM
dt
− Rc
M

dM
dt

nm (E.1)

where nm = (1 − F )Mcm, the relative number of moles in the mantle reservoir. In terms of
residence time theory, we can identify

P(m→ c) =
Rc
M

dM
dt

δt (E.2)

as the probability that an atom in Earth’s mantle reservoir will transition to Earth’s core
reservoir in a time interval δt. This probability varies in time, and is zero once accretion has
ceased. By integration, we find that the probability that an atom which was in the Earth’s
mantle reservoir at time t is still in the Earth’s mantle by the end of accretion is

P(atom in m at present|atom in m at time t) = (M(t))Rc . (E.3)

At time t, the number of atoms which arrive in Earth’s mantle reservoir in a time interval δt
is

cb
dM
dt

δt (E.4)
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of which
cb

dM
dt

(M(t))Rc δt (E.5)

will remain in Earth’s mantle at the end of accretion. Hence

ρ(t) = (1 +Rc)
dM
dt

(M(t))Rc (E.6)

is a probability density function which gives the probability that an atom in Earth’s mantle
at present arrived there at time t. The corresponding cumulative distribution function is

P(Tc ≤ t) = (M(t))1+Rc . (E.7)

Alternatively, t− Tc is a random variable which gives the amount of time an atom has spent
in the mantle reservoir, i.e. it is a random variable giving the distribution of residence times
in the mantle reservoir. It is this residence time information for the daughter element which
gets encoded in the isotopic observations.

Interpreting the age distributions in the general non-equilibrium (k < 1) case (i.e. (B.13))
is less straightforward, but essentially represents a mixture of unequilibrated zero age material
and equilibrated material with a distribution of ages similar to the above.

F Isotopic parameters and calculated model ages

The Hf-W isotopic system consists of parent p = 182Hf, daughter d = 182W, and reference
isotopes p′ = 180Hf and d′ = 184W. Numerical values for the parameters describing the Hf-W
isotopic system are given in Supplementary Table 1. These values yield an equilibrium two
stage age t2,eq = 31.0± 4.4 Myr and equilibrium exponential accretion time τa,eq = 10.6± 0.5
Myr, assuming constant partition coefficients. The predominant uncertainty is in the Hf/W
value of the mantle relative to that of the bulk, which leads to an uncertainty in the assumed
constant partition coefficient, DW = 32.5±11.0. Hf is thought not to enter the core, and thus
DHf = 0.

The U-Pb isotopic system consists of two parent isotopes p = 238U, 235U, with respective
daughter isotopes d = 206Pb, 207Pb and common reference isotope d′ = 204Pb. Numerical
values for the parameters describing the U-Pb isotopic system are given in Supplementary
Table 2. The mantle

(
206Pb/204Pb

)
m

and
(
207Pb/204Pb

)
m

isotopic ratios are not well con-
strained, as U/Pb fractionation has been ongoing in the Earth due to crust/mantle differ-
entiation. Different literature estimates for the bulk silicate Earth lead isotopic composition
are given in Supplementary Table 3 (after Halliday15). As was pointed out by Kamber and
Kramers20, using some of the estimates in Supplementary Table 3 to calculate a two stage age
is circular, as some of the authors assumed a particular two stage age from the outset when
constructing their estimates35,36. However, not all of the estimates are circular, and they still
provide a reasonable guide to the uncertainties involved37.

Unfortunately, the
(
238U/204Pb

)
b
≡ µb isotopic ratio of the bulk Earth is not well con-

strained either, due to the volatility of lead. Estimates of µb range from 0.717-1.438. The
mantle value is better constrained, with µm = 7 − 9 being a typical estimate17. These es-
timates imply a range for the lead partition coefficient, DPb = 8 − 25. Wood et al.28 have
suggested a value of DPb ∼ 13 based on experimental partitioning studies, and this is the
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value adopted here (and used in the calculations for Figures 2, 3, and 4). It is assumed that
U does not enter the core to any great extent, so DU = 0.

Given the partition coefficient estimate DPb = 13, the estimates of
(
206Pb/204Pb

)
m

and(
207Pb/204Pb

)
m

can be combined with the parameters in Supplementary Table 2 to infer the
model ages t2,eq and τa,eq, along with µb and µm. This is done in Supplementary Table 3. The
values estimated for µb and µm are broadly consistent with the estimates above. There is a
wide range in the estimated model ages, t2,eq = 55.9− 130.5 Myr and τa,eq = 21.6− 51.0 Myr
(using all but the two most extreme estimates from Supplementary Table 3), but nevertheless
the ages are notably different from those obtained for Hf-W. The bounds of Figure 4 are
calculated using a U-Pb two stage age of t2,eq = 65.0 Myr, but it should be noted that this
is simply chosen as a reasonably reasonably representative value, to illustrate the kind of
constraints that Pb isotopes provide, and is not a definitive value.

G Parametrisation of metal/silicate partition coefficients

Metal/silicate partition coefficients depend on temperature, pressure, and oxygen fugacity
conditions. Here we have used the metal/silicate partition coefficient parametrisation of Wade
and Wood6,7,28,29, which is outlined below. For a fuller description the reader is referred to
the original papers.

Oxygen fugacity is defined relative the iron-wüstite (IW) buffer as

∆IW = 2 log10

(
γsil

FeO/γ
met
Fe

)
+ 2 log10

(
xsil

FeO/x
met
Fe

)
, (G.1)

where ∆IW is the oxygen fugacity relative to the IW buffer in log10 units. γmet
Fe and γsil

FeO

are the activity coefficients of Fe and FeO in the metal and silicate respectively, and xmet
Fe and

xsil
FeO are the corresponding molar concentrations. The activity coefficients of elements in the

metal phase are assumed to depend on temperature as

γmet
M (T ) =

(
γmet

M (T0)
)T0/T (G.2)

where γmet
M (T0) is the activity at a reference temperature of T0 = 1873 K. Formally, the

activity coefficients should also depend on pressure and composition, but for simplicity this
dependence is neglected here, and γmet

M (T0) is assumed constant. The activities γmet
M (T0) at

the reference temperature were calculated by an interaction parameter approach39, with an
assumed metal composition, and are given in Supplementary Table 4. The activity of FeO in
the silicate is assumed to be independent of temperature, with γsil

FeO = 3. Different choices for
γsil

FeO affect the absolute values of the oxygen fugacity, but the relative results will remain the
same.

Using (G.1) and (G.2), the molar Fe metal/silicate partition coefficient can be written as
a function of oxygen fugacity as

log10D
?
Fe ≡ log10

(
xmet

Fe /xsil
FeO

)
= −1

2
∆IW − T0

T
log10 γ

met
Fe (T0) + log10 γ

sil
FeO. (G.3)

The partitioning of the other elements is parametrised relative to the iron partitioning as

log10D
?
M = a+ b

1
T

+ c
P

T
+ dN +

v

2
log10D

?
Fe +

T0

T

(v
2

log10 γ
met
Fe (T0)− log10 γ

met
M (T0)

)
(G.4)
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which can be rewritten as

log10D
?
M = a+ b

1
T

+ c
P

T
+ dN − v

4
∆IW − T0

T
log10 γ

met
M (T0) +

v

2
log10 γ

sil
FeO. (G.5)

a, b, c, and d are coefficients obtained by regression of experimental data, given in Supple-
mentary Table 4. v is the assumed valence (which for W is also found by regression as it has
mixed valence states30). T is the temperature (in K), P is the pressure (in GPa), and N is
the molar ratio of non-bridging oxygens to tetrahedral cations in the silicate melt (assumed
constant at 2.7). (G.3), (G.4), and (G.5) parametrise the molar partition coefficients D?

M, but
what is of usual interest is the partition coefficients by mass, namely

DM = cmet
M /csilM, (G.6)

where c refers to concentration by mass. However, to a good approximation it is found that
DM ≈ D?

M, and we will use molar and mass partition coefficients interchangeably.
Target values for the partition coefficients can be obtained from estimates of the present

day mantle cm and core cc abundances, namely

Dobs = cc/cm. (G.7)

Estimated values are given in Supplementary Table 5. Note that these target values should
be compared to integrated values of the true partition coefficients over the different pressure,
temperature, and oxygen fugacity conditions that have been experienced during metal silicate-
equilibration over the course of the Earth’s accretion.

H Pressure, temperature, and oxygen fugacity evolution

To complete the model, the pressure, temperature and oxygen fugacity conditions under
which metal silicate equilibration takes place must be specified. The approach taken here
is based on that of Wade and Wood6, where it postulated that the point of last metal-
silicate equilibration takes place at the base of a deep magma ocean. This final metal-silicate
equilibration is assumed to take place on the peridotite liquidus, which we approximate by

T = 1973 + 28.57P, (H.1)

where T is in K and P is in GPa. The pressure of equilibration is assumed to evolve as

P (t) = P0(M(t))2/3, (H.2)

for some constant P0 to be determined. The assumed scaling of (M(t))2/3 reflects the increase
in pressure with planet size, which scales as the square of the planet radius. The pressure P0

can be associated with an average depth of magma ocean equilibration through h0/hcmb =
P0/Pcmb, where Pcmb and hcmb are the present day core-mantle boundary pressure and depth
(Pcmb = 135 GPa, hcmb = 2886 km).

Finally, the oxygen fugacity state is allowed to evolve as the planet accretes. We assume
the following simple form, based on that of Corgne et al7,

∆IW =

 ∆IW1, 0 < M(t) < 0.1,

∆IW1 + (∆IW2 −∆IW1)
M(t)− 0.1

0.9
, 0.1 < M(t) < 1,

(H.3)
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for initial oxygen fugacity ∆IW1 and final oxygen fugacity ∆IW2. The oxygen fugacity re-
mains constant for the first 10% of the accretion, and then increases linearly for the remainder
of the accretion.

I Trace element inversion

Values of the parameters P0, ∆IW1 and ∆IW2 that best fit the observations are obtained by
inversion, using a penalty function approach (Figure 1). Having these three free parameters
seems to be the minimum needed to get a good match to the observations. The chosen penalty
function to minimise is

g(P0,∆IW1,∆IW2) =
n∑
i=1

(
log10D

model
i − log10D

obs
i

σi

)2

(I.1)

where Dmodel
i is the overall partition coefficient that is obtained from integrating the model,

namelyDmodel = cc/cm. i = 1, 2, . . . , n refer to the n trace elements that are used for inversion.
Only a subset of the available trace elements are used in the inversion (Fe, Ni, Co, V, W,
Si, Nb, Ta), since these elements are the most refractory and their bulk Earth abundances
are thus best constrained. The uncertainties σ2

i arise from two sources: uncertainties in the
experimentally derived partition coefficients D∗i , which lead to uncertainties in Dmodel

i on
integrating the model (shown as red error bars in Figure 1), and uncertainties in the present
day elemental abundances, which lead to uncertainties in Dobs

i (shown as blue error bars in
Figure 1). The total uncertainty is given by

σ2
i = σ2

log10D
model
i

+ σ2
log10D

obs
i
, (I.2)

which is used to weight the different terms in (I.1). The lower the uncertainty, the greater
weight that is placed on that term in the penalty function. Thus certain elements influence
the penalty function more strongly than others, as some elements have better constrained
abundances and partitioning behaviours. The 1σ uncertainties on log10D

obs are given in
Supplementary Table 5, and the 1σ uncertainties on the experimental regression coefficients for
D∗ are given in Supplementary Table 4. The error propagation to determine the uncertainty
on Dmodel proceeds under the assumption of independent errors, namely

σ2
log10D

? = σ2
a + σ2

b

1
T 2

+ σ2
c

P 2

T 2
+ σ2

dN
2 +

σ2
v

16
∆IW 2. (I.3)

Different studies report errors in different ways, which makes comparing errors between studies
difficult. For the studies considered here, the most noticeable difference is that Cottrell et
al.30 report errors on all regression coefficients (v, a, b, c, d) whereas the other studies6,7,28,29

only report errors on the coefficients c and d (and also b for the case of Cr in 7 ). To make a fair
comparison between the W partition coefficients of Cottrell et al.30 and the other studies we
have used a regression through the Cottrell et al.30 data set which has b set to the value given
in thermodynamic tables (as done in the other studies6), and have not put any errors on the
coefficients a and b. We have kept the error on the valence v as W, unlike the other elements,
has a mixed valence state (between 4 and 6), which requires v to be a fitted parameter.

Different elements are sensitive to different model parameters because their partitioning
depends in different ways on temperature, pressure, and oxygen fugacity. The inversion
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technique is particularly sensitive to the more siderophile elements and to those elements
whose uncertainties are smallest, such as Fe, Ni, Co and V. The Fe abundance is best known,
and sets the integrated oxygen fugacity. High pressures and an increase in oxygen fugacity
are required to simultaneously match the slightly siderophile elements such as V and the
more siderophile Ni and Co6,29. Increasing oxygen fugacity also seems to be required to
get the correct mantle Nb/Ta ratio7. In Figure 1, good fits are seen for all elements, with
the exception of Ga. The reason for gallium’s misfit is unclear, but may be due to a poor
assessment of the bulk Earth value as it is volatile7.

When disequilibrium models are considered (as in Figure 1b) the conditions of differen-
tiation in the embryos are important and must be specified. There is a trade-off between
conditions in the embryos and the inferred conditions during accretion. An example is shown
in Supplementary Figure 2 where the oxygen fugacity conditions on Earth are plotted as a
function of the oxygen fugacity of differentiation in the embryos. If the conditions in the
embryos are sufficiently reducing (in this case ∆IW = −2.7), there is no need for an in-
crease in oxygen fugacity during accretion. It should be noted that the misfit (given by (I.1))
also varies as a function of embryo oxygen fugacity, with a value around -0.5 being the best
fitting (lowest misfit), and increasing for values lower than this. However, all the embryo
values shown in Supplementary Figure 2 still provide goods fits to the observations to within
the uncertainties. It should be noted that Figure 1 and Supplementary Figure 2 assume all
embryos differentiate under the same pressure, temperature, and oxygen fugacity conditions.
However, it is likely that this is not the case, and one alternative to having an increase in
oxygen fugacity during Earth’s accretion is to have more oxidised material accreting later24.

J Remarks on partially equilibrative plumbing

The k = 1 case of the model presented here is exactly the “fully equilibrative plumbing”
model first introduced by Harper and Jacobsen40. However, the k < 1 and k = 0 cases
are different from the “partially equilibrative plumbing” and “non-equilibrative plumbing”
models of Harper and Jacobsen40. Partial and non-equilibrative plumbing have metal-silicate
equilibration in the embryos occurring at the time of accretion rather than at time 0 as
happens here. This can be investigated in the same way, by changing the concentrations in
the incoming material from those given in (B.8) to

dme =
1

1 +Rd
· db0 + pb0(1− e−λt)

1− F
, (J.1)

dce =
Rd

1 +Rd
· db0 + pb0(1− e−λt)

F
. (J.2)

Following through the same calculations as before, the cumulative distribution function asso-
ciated with the partially equilibrative plumbing model is simply

P(Td ≤ t) = (M(t))1+kRd , (J.3)

which is exactly the same as the distribution of Sd encountered earlier. Hence all the rela-
tionships derived for Sd can be applied directly to the partially equilibrative plumbing model.
It should be noted that the two stage age t2 is independent of the degree of equilibration k
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for the partially equilibrative plumbing model, t2 = t2,eq. However, the exponential mean age
certainly does depend on k, through

e−λt2,eq = e−λt2 =
Γ(2 + kRd)Γ(1 + λτa)

Γ(2 + kRd + λτa)
. (J.4)

For the end-member case of non-equilibrative plumbing (k = 0), the above simplifies to

t2,eq =
1
λ

log (1 + λτa) , (J.5)

which is the relationship quoted by Jacobsen and Harper41 (equation (61)) and Harper and
Jacobsen40 (equation (11)).

K Remarks on the relationship between two stage model ages

The relationship between two stages ages with and without equilibration has also been dis-
cussed by Allègre et al.17, in which it was found that two stage ages t2 = 110− 190 Myr and
degrees of equilibration from 0.86 to 0.94 were needed to obtain overlap between Hf-W and
U-Pb. While the inferred ages are broadly in line with those estimated here, the degrees of
equilibration are not. The relationship between the two stages ages given by Allègre et al.17

is
1− e−λt2,eq = fd

(
1− e−λt2

)
, (K.1)

where symbols have been changed to be compatible with the notation of this manuscript. In
Allègre et al.17, t2,eq is referred to as the apparent age, and t2 as the true age, but it should
be noted that both ages are examples of model ages. fd is referred to as the fraction of silicate
exchanged. (K.1) should be compared with (C.8), which implies that fd is related to k by

fd =
k (1 +Rd)
1 + kRd

. (K.2)

The amount of equilibration quoted by Allègre et al.17 is in terms of fd rather than the mass
fraction k, with 0.86 to 0.94 being values of fd thought to be consistent with the observations.
Allègre et al.17 assume that fd is the same for both W and Pb, but as can be seen in (K.2), fd
depends on Rd and thus on the partitioning behaviour of the daughter; likely to be different
for W and Pb. The error in Allègre et al.17 arises from a mistake in using the mixing equation
for isotopic ratios in the form (d/d′) = fd(d/d′)1 + (1 − fd)(d/d′)2. The quantity fd in this
equation is not the proportion by mass in which the two quantities mix, but depends on the
concentrations of the two substances. The values of fd quoted by Allègre et al.17 can be
converted to k using (K.2). With a typical value for RW = 15 (DW = 33), the quoted fd
values imply a reequilibration mass fraction k of around 0.28 to 0.49. RPb is much less well
known, but using a value of 6 (DPb = 13 as used above) implies a reequilibration fraction k
of around 0.46 to 0.69. The values of k consistent with both Hf-W and U-Pb estimated here
(k = 0.37−0.41) lie somewhere in the middle of the values one can infer from Allègre et al.17.
Conversely, using the k values here, consistency requires fW ≈ 0.91 and fPb ≈ 0.81.
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[34] Albarède, F. Radiogenic ingrowth in systems with multiple reservoirs: applications to
the differentiation of the mantle-crust system. Earth Planet. Sci. Lett. 189, 59–73 (2001).

[35] Kramers, J. D. & Tolstikhin, I. N. Two terrestrial lead isotope paradoxes, forward
transport modeling, core formation and the history of the continental crust. Chem. Geol.
139, 75–110 (1997).

[36] Murphy, D. T., Kamber, B. S. & Collerson, K. D. A refined solution to the first terrestrial
Pb-isotope paradox. J. Petrol. 44, 39–53 (2003).

[37] Wood, B. J. & Halliday, A. N. Does U-Pb date Earth’s core formation?; How well can
Pb isotopes date core formation? (Reply). Nature 444, E2–E3 (2006).

[38] Bourdon, B., Touboul, M., Caro, G. & Kleine, T. Early differentiation of the Earth and
Moon. Phil. Trans. R. Soc. A 366, 4105–4128 (2008).

[39] Ma, Z. Thermodynamic description for concentrated metallic solutions using interaction
parameters. Metall. Mater. Trans. 32, 87–103 (2001).

[40] Harper, C. L., Jr. & Jacobsen, S. B. Evidence for 182Hf in the early Solar System
and constraints on the timescale of terrestrial accretion and core formation. Geochim.
Cosmochim. Acta 60, 1131–1153 (1996).

[41] Jacobsen, S. B. & Harper, C. L., Jr. Accretion and early differentiation history of the
Earth based on extinct radionuclides. In Earth processes: Reading the isotopic code,
47–74 (AGU Geophysical Monograph 95, 1996).

[42] Kwon, S.-T., Tilton, G. R. & Grünenfelder, M. H. In Carbonatites - Genesis and Evolu-
tion, 360–387 (Unwin-Hyman, London, 1989).

[43] Davies, G. F. Geophysical and isotopic constraints on mantle convection: an interim
synthesis. J. Geophys. Res. 89, 6017–6040 (1984).

[44] Liew, T. C., Milisenda, C. C. & Hofmann, A. W. Isotopic contrasts, chronology of
elemental transfers and high-grade metamorphism: the Sri Lanka Highland granulites,
and the Lewisian (Scotland) and Nuk (SW Greenland) gneisses. Int. J. Earth Sci. 80,
1437–3262 (1991).

[45] Galer, S. J. G. & Goldstein, S. L. Depleted mantle lead isotopic evolution using con-
formable ore leads. Terra Abstr. 3, 485–486 (1991).

SI–18



[46] Doe, B. R. & Zartman, R. E. In Barnes, H. L. (ed.) Geochemistry of Hydrothermal Ore
Deposits, 22–70 (Wiley, New York, 1979).

[47] Kamber, B. S. & Collerson, K. D. Origin of ocean-island basalts: a new model based on
lead and helium isotope systematics. J. Geophys. Res. 104, 25479–25491 (1999).
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Supplementary Figure 1: A sketch of the box model used throughout this work. Embryo
material differentiates into metal and silicate in equilibrium with one another at time 0. Over
the course of the accretion, embryo material is added to the Earth. Embryo mantle material
is added directly to the Earth’s mantle, whereas embryo core material take two routes: a mass
fraction k chemically equilibrates with the Earth’s mantle as it travels to the core, and the
remaining 1− k is added directly to the Earth’s core without reequilibration.
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Supplementary Figure 2: An example of the trade-off between conditions in the embryos
and conditions on Earth in a disequilibrium model (k = 0.42). The embryos are assumed to
differentiate at pressure Pembryo = 9 GPa, temperature Tembryo = 2700 K, and oxygen fugacity
∆IWembryo as shown on the horizontal axis. The three Earth parameters P0 (black line),
∆IW1 (red line), and ∆IW2 (blue line) which best fit the siderophile element abundances
are plotted as a function of ∆IWembryo. In disequilibrium models, the inferred change in
oxygen fugacity is very sensitive to the oxygen fugacity conditions under which the embryos
differentiate. In fact, the siderophile element abundances can be explained without an increase
in oxygen fugacity over Earth’s accretion provided conditions of differentiation in the embryos
are sufficiently more reducing than on Earth. In this particular example, ∆IWembryo = −2.8
and ∆IWEarth = −1.1 are appropriate values for which an increase in oxygen fugacity during
accretion is not required (intersection of the ∆IW1 and ∆IW2 curves).
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Supplementary Table 2: Input parameters for the U-Pb system.
Parameter Value Remarks
λ238 1.551× 10−10 yr−1 Decay constant of 238U.
λ235 9.849× 10−10 yr−1 Decay constant of 235U.(
235U/238U

)
b

1/137.88 Present day value.(
206Pb/204Pb

)
b0

9.307 Initial bulk Earth value (Canyon Diablo).(
207Pb/204Pb

)
b0

10.294 Initial bulk Earth value (Canyon Diablo).
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Supplementary Table 5: Effective partition coefficients inferred from present day core/mantle
concentrations, Dobs = cobs

c /cobs
m . First column shows log10Dobs with a 1 standard deviation

error in brackets. The 2σ range for Dobs that results is shown in the second column. Asterixes
(*) denote volatile elements, for which estimates of bulk Earth composition are much more
uncertain. Estimates are based on those used by Corgne et al.7 and Wade and Wood6 (in
turn based on52–54) with the exception of W which is based on12. The volatile and only
moderately siderophile elements Zn and Ga have very uncertain abundances. Ti is normally
regarded as a refractory lithophile element, and thus its concentration in the core is usually
estimated to be zero.

log10D
obs 2σ interval for Dobs

W 1.513 (0.077) 23-46
Ni 1.418 (0.017) 24-28
P∗ 1.398 (0.140) 13-48
Co 1.381 (0.013) 23-26
Pb 1.159 (0.118) 8-25
Fe 1.136 13.66
Cu∗ 0.801 (0.099) 4-10
V 0.262 (0.042) 1.5-2.2
Cr∗ 0.195 (0.175) 0.7-3.5
Mn∗ -0.155 (0.274) 0.2-2.5
Nb -0.276 (0.211) 0.2-1.4
Ta -0.611 (0.195) 0.1-0.6
Si∗ -0.728 (0.136) 0.10-0.35
Zn∗ -0.824 (0.301) 0-0.6
Ga∗ -1.000 (0.301) 0-0.4
Ti −∞ 0
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Supplementary Table 6: Table of variables

a, b, c, d, v coefficients used in partition coefficient parametrisation ((G.5) and Supplementary Table 4)
cb concentration of chemical species in the bulk Earth
cc concentration of chemical species in the Earth’s core
cc0 initial concentration of chemical species in the Earth’s core (cc at t = 0)
cce concentration of chemical species in the core of the embryos
cm concentration of chemical species in the Earth’s mantle
cme concentration of chemical species in the mantle of the embryos
d daughter isotope, e.g. 182W
d′ reference isotope, e.g. 184W
D partition coefficient by mass
D? partition coefficient by mole

Dmodel cc/cm from model calculations
Dobs cc/cm from observed abundances (Supplementary Table 5)
F mass fraction of Earth’s core (0.323)
k mass fraction of metal that chemically equilibrates during accretion

M(t) fraction of Earth accreted at time t
N molar ratio of non-bridging oxygens to tetrahedral cations in the silicate melt
p parent isotope, e.g. 182Hf
p′ reference isotope, e.g. 180Hf
P pressure
R = FD/(1− F )
Sd random variable defined by (C.1)
t time since beginning of solar system
t2 two stage model age

t2,eq two stage model age, assuming full equilibration (k = 1)
T temperature
Td random variable defined by (B.13)
α time scale parameter of Weibull distribution
β shape parameter of Weibull distribution
γ activity coefficient

∆IW oxygen fugacity relative to the iron-wüstite buffer in log10 units
λ decay constant
µ 238U/204Pb isotopic ratio corrected for radioactive decay
σ standard deviation
τa exponential model age (mean age and time of 63% accretion)

τa,eq exponential model age, assuming full equilibration (k = 1)
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